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Phytophthora is the most devastating pathogen of dicot plants. There is a need for resistance sources with different
modes of action to counteract the fast evolution of this pathogen. In order to better understand mechanisms of defense
against P. infestans, we analyzed several clones of potato. Two of the genotypes tested, Sarpo Mira and SW93-1015,
exhibited strong resistance against P. infestans in field trials, whole plant assays and detached leaf assays. The resistant
genotypes developed different sizes of hypersensitive response (HR)-related lesions. HR lesions in SW93-1015 were
restricted to very small areas, whereas those in Sarpo Mira were similar to those in Solanum demissum, the main source of
classical resistance genes. SW93-1015 can be characterized as a cpr (constitutive expressor of PR genes) genotype
without spontaneous microscopic or macroscopic HR lesions. This is indicated by constitutive hydrogen peroxide (H2O2)
production and PR1 (pathogenesis-related protein 1) secretion. SW93-1015 is one of the first plants identified as having
classical protein-based induced defense expressed constitutively without any obvious metabolic costs or spontaneous
cell death lesions.

Introduction

Despite more than a century of resistance breeding, potato
(Solanum tuberosum) is still severely hit by late blight, currently
causing billion dollar losses annually.1 Phytophthora infestans, the
oomycete causing late blight disease, can totally devastate a potato
field in a matter of days. Frequent application of fungicides,
sometimes on more than a weekly basis, is therefore required
during severe epidemics. In parallel to overcoming plant defense
mechanisms,2 many pesticides have become inefficient against the
pathogen.3 Environmental hazards and toxicity to farmers have
led to increased concerns regarding the use of pesticides. Lack of
appropriate human protection standards and resources for
frequent use of fungicides causes even greater health problems
and economic losses for farmers in developing countries.1

Most plant pathogenic microorganisms actively penetrate the
plant surface to access intracellular nutrients. Plants have therefore
developed different mechanisms to counteract such pathogen

attacks. Some of these defense mechanisms are preformed (con-
stitutive), providing constant physical and chemical barriers to
prevent pathogen infection, whereas others are induced after
pathogen perception. Locally induced plant responses include
production of reactive oxygen species (ROS), hypersensitive res-
ponse (HR), callose deposition and production of pathogenesis-
related (PR) proteins.4 Reactive oxygen species (ROS) have
antimicrobial activity and play a role in cross-linking of cell wall
proteins and as inducers of defense-related gene expression, and
are often linked with early stages of HR.5,6 ROS generation prior
to HR is reported to be elicited by P. infestans in potato7 and plays
a pivotal role in disease resistance to P. infestans.8,9

The first interaction between the pathogen and the host
occurs in the apoplast, where recognition and lysis of the patho-
gen occur in cases of successful defense. Proteases and hydrolases
(such as cysteine proteases) secreted in the apoplast contribute
to the defense against the pathogens, some of which are under
diversifying selection in natural environments.10 Several of the
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apoplastic proteins are induced after pathogen attack and are
therefore referred to as PR proteins. These PR proteins have been
classified into 17 families (from 1 to 17) based on time of their
discovery. Examples include the thaumatin-like PR5 protein
family, which has been associated with activity against oomycete
pathogens,11 peroxidases (PR9), which are involved in cell wall
cross-linking or lignification, and glucanases, which degrade the
cell wall and release glucosidal elicitors. PR1 is secreted in the
apoplast and is a commonly used marker for defense activation
in plants.12 In order to evade these host defenses, pathogen not
only alters the extracellular proteome13 but also inhibits14 and
neutralizes15 key proteases that are important for defense.

Many Arabidopsis lesion mimic mutants (mutants which
produce spontaneous HR-like lesions without pathogen attack)
with constitutively activated defense have been identified.16,17

There are also a few Arabidopsis mutants with constitutive
defense without formation of spontaneous HR-like lesions,
including constitutive PR producer (cpr1 and cpr6) mutants
showing increased resistance to pathogens accompanied with
normal HR.18,19 Other similar Arabidopsis mutants are the
defense no death (dnd1 and dnd2) mutants that have enhanced
resistance against the bacterial pathogen Pseudomonas syringae
without producing any HR indicating that resistance against
pathogens and HR can be uncoupled.20,21 However dnd1 and
dnd2 mutants can display spontaneous lesions in high light and
low humidity conditions.22 Moreover, the Arabidopsis mpk4
(MAP kinase 4) mutant constitutively expresses PR proteins
without spontaneous lesions and has increased resistance to
bacterial and oomycete pathogens.23 Arabidopsis cpr-type mutants
are generally dwarfed and are believed to have high fitness cost.
Interestingly, the recently discovered Arabidopsis mutant cdd1
(constitutive defense without defect in growth and development
1) shows enhanced resistance against a bacterial pathogen with-
out apparent cost of resistance.24 Several of the Arabidopsis
mutants have increased salicylic acid levels in uninfected plants
compared with wild-type plants. In contrast, potato has high
basal salicylic acid levels but this does not lead to constitutive
defense activation.25

Modeling studies show that inducible defense is likely to be
favored when: (1) pathogen attack varies in time or space; and/or
(2) there is a relatively high cost of expressing the defense,
provided that induced defense leads to a net benefit (benefit-
cost).26 It has been postulated that the magnitude of fitness costs
of a disease determine whether constitutive or inducible defense
is favored, i.e., constitutive defense becomes the optimal choice
when there are fast and severe infections by the pathogen.27,28

Another proposed model for optimal defense points at the useful-
ness of storing defense-related proteins rather than producing
new proteins, and concludes that storage strategies can be more
cost-favorable in the event of a severe attack.29 Both models
predict that constitutive responses are favorable when there is
higher probability of pathogen attack.

Conventional breeding with introgression of resistance genes
from wild potato relatives such as Solanum demissum into
susceptible potato varieties was initially successful in conferring
resistance against P. infestans. However, this narrow, race-specific

resistance has been quickly overcome by the pathogen.30 Trans-
genic approaches to introduce resistance genes into susceptible
cultivars have also been utilized. One example is the Katahdin
potato containing the RB gene, which provides slightly broader
resistance than the resistance genes from S. demissum.2 A trans-
genic strategy to stack resistance genes for more durable resis-
tance has also been used,31 but field trials over several years are
needed to test the durability of such gene combination against
the rapidly evolving pathogen. The unusually large number of
repeated sequences and highly mobile transposable elements in
the P. infestans genome32 might explain its great ability to modify
virulence capability to escape host defense mechanisms. Ideally,
several different resistance mechanisms should be utilized in
different spatiotemporal combinations.

In this study we examined defense mechanisms in two potato
genotypes that we found to be highly resistant against Phyto-
phthora in field experiments. In one genotype the typically
induced defense system was constitutively active without any
apparent metabolic cost.

Results

SW93-1015 and Sarpo Mira resistance to Phytophthora
infestans in the field. Field trials were performed in southern
Sweden using different potato cultivars and breeding clones from
the Swedish national potato breeding program. Results from the
2007 trial, shown as relative Area under Disease Progression
Curve (rAUDPC), indicated that SW93-1015 and Sarpo Mira
were highly resistant to P. infestans (Table 1), while other cultivars
showed only partial resistance compared with the susceptible
cultivar Bintje. No spontaneous HR lesions were found in any of
the genotypes tested. Similar results were obtained in field trials
performed 2008 and 2009, indicating that SW93-1015 and Sarpo
Mira are resistant to Phytophthora populations in Sweden.

SW93-1015 and Sarpo Mira highly resistant to P. infestans
under greenhouse conditions. Based on the field data (Table 1),
we selected Sarpo Mira and SW93-1015 for further analysis.
To confirm the high field resistance shown by Sarpo Mira and
SW93-1015, we tested these genotypes for resistance against
P. infestans in whole plant greenhouse resistance assays and in
detached leaf assays. The susceptible cultivar Desiree was used as
a control. SW93-1015 and Sarpo Mira were found to be fully

Table 1. Infection rates of P. infestans in field trials measured as relative area
under disease progression curve (rAUDPC). Means of four replications

Genotype Mean relative AUDPC ±SD

Bintje 0.60 ± 0.13

Danva 0.36 ± 0.06

Matilda 0.40 ± 0.03

Superb 0.39 ± 0.06

Escort 0.22 ± 0.13

Robijn 0.23 ± 0.05

SW93-1015 0.0075 ± 0.0006

Sarpo Mira 0.0020 ± 0.0017

RESEARCH PAPER
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resistant to P. infestans, whereas Desiree was susceptible (Fig. 1A
and B). Similar results were observed in the detached leaf assays
(Fig. 1C). These results were obtained in three independent
experiments.

SW93-1015 and Sarpo Mira respond differently to phyto-
phthora challenge. To determine whether the two genotypes have
different mechanisms of resistance, we followed the resistance
reaction carefully after spraying with P. infestans zoospores. No
visible HR resistance lesions were observed on SW93-1015 in
whole plant assays or in field trials. Sarpo Mira occasionally
formed macroscopic resistance lesions on older leaves (data not
shown). In detached leaf assays we compared these two geno-
types with the susceptible cultivar Desiree and the resistant wild
relative to potato S. demissum. Following inoculation, severe
pathogen growth was observed at 9 dpi on Desiree, whereas
S. demissum, Sarpo Mira and SW93-1015 did not develop any
pathogen growth and instead developed HR lesions (Fig. 2A). In
both Sarpo Mira and SW93-1015, small HR lesions appeared at
3 dpi. No significant difference in number and size of lesions
between the two genotypes was observed at this time point
(Fig. 2B and C). However, at a later time point (9 dpi), there was
a notable difference in lesion size, with Sarpo Mira having
developed larger HR lesions similar in size to those of S. demissum,
while HR lesions in SW93-1015 were restricted to very small
areas (Fig. 2A). Number of HR lesions increased in SW93-1015
at 9 dpi (Fig. 2B), whereas size had not increased significantly
(Fig. 2C). In Sarpo Mira, lesions observed at 3 dpi increased in
size and fused, thereby reducing the number of lesions (Fig. 2B)
and making them significantly larger (Fig. 2C). Similar results
were obtained in three independent experiments.

Restricted microscopic HR in SW93-1015 in response to
Phytophthora challenge. Microscopic observation with Trypan
Blue staining of the two resistant genotypes revealed a similar
pattern of HR as observed at macroscopic level (Fig. 3). Micro-
scopic HR was not observed in uninfected plants, or in any of
the three genotypes at 6 hpi (Fig. 3A and B). However, HR was
visible at 24 hpi in both SW93-1015 and Sarpo Mira. At this
stage HR was scattered and limited to few cells in both resistant
genotypes, SW93-1015 and Sarpo Mira (Fig. 3C). In the
susceptible genotype Desiree, Phytophthora germination was
observed without HR (Fig. 3C). At 3 dpi, the scattered HR
phenotype remained limited to a few cells in SW93-1015, in
contrast to HR lesion size in Sarpo Mira, which had increased to

Figure 1. Whole plant assay in the greenhouse performed on Desiree,
SW93-1015 and Sarpo Mira after spraying with P. infestans sporangia
(15,000/ml). (A) Graph showing scoring of P. infestans infection
development, represented as percentage of plant area infected based on
the Malcolmson 1–9 scale. Readings were taken after 1, 3, 5, 7 and 9 dpi
in three independent experiments where the respective plant had
the same score at a given time point in all three experiments. (B) Picture
taken at 9 dpi after P. infestans treatment of Sarpo Mira, Desiree and
SW93-1015 (from left to right). (C) Graph showing infection lesion
diameter (mm) in SW93-1015, Sarpo Mira and S. demissum at 1, 3, 5, 7
and 9 dpi.
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a larger extent (Fig. 3D). In Desiree, Phytophthora germination
observed at 24 hpi resulted in intense hyphal growth at 3 dpi
(Fig. 3D). Similar results were obtained in three independent
experiments. Thus, we did not detect spontaneous cell death
in SW93-1015 or Sarpo Mira at either macroscopic or
microscopic level.

Constitutive H2O2 generation in SW93-1015. Reactive
oxygen species are linked to early stages of HR.6 To determine
whether H2O2 production was involved in resistance signaling
and might constrain HR lesion size in SW93-1015, we per-
formed DAB (3,3-diaminobenzedine) staining at different time
points after inoculation with P. infestans zoospores (Fig. 4).
Elevated levels of H2O2 were found in uninfected SW93-1015
leaves and at 6 h post inoculation compared with Desiree and
Sarpo Mira where no H2O2 was detected at these time points
(Fig. 4A and B). In Desiree and Sarpo Mira, H2O2 appeared at
24 hpi and increased at 72 hpi, while SW93-1015 maintained
high levels of H2O2 at these time points (Fig. 4C and D). The
elevated DAB staining in uninfected SW93-1015 leaves indicated
that H2O2 generation was constitutive. Activation of H2O2 pro-
duction in Desiree and Sarpo Mira indicated that the recogni-
tion exists in both genotypes, but Desiree was unable to prevent
pathogen growth. Similar results were obtained in three
independent experiments. This finding was confirmed using nitro
blue tetrazolium (NBT) staining (data not shown).

SW93-1015 secretes PR1 protein constitutively in the
apoplast. In order to further verify the constitutive activation of
defense-related compounds in SW93-1015, apoplast liquid was

isolated and analyzed for secreted proteins. Separation of samples
from the three genotypes on SDS-polyacrylamide gels (Fig. 5A)
showed higher basal level of PR1 in the apoplast of SW93-1015
than in Sarpo Mira and Desiree. PR1 was identified by mass
spectrometry according to our earlier study.33 Constitutive PR1
expression in SW93-1015 apoplast was observed repeatedly in
several independent experiments.

SW93-1015 and Sarpo Mira have candidate resistance
proteins in the apoplast. The secreted protein profile of the
three potato genotypes was studied in more detail using mass
spectrometry. More than 150 proteins from each of the three
genotypes were identified (Fig. 5B). The most prominent proteins
present in all three genotypes included multiple PR proteins from
several families such as peroxidases (e.g., PR9), 1,3-β-glucanases,
chitinases, NtPRp27-like protein (PR17), subtilase P69 protei-
nases (PR7) and 24K germin-like proteins (PR15), all of which
were identified with at least six peptides. Some proteins could
only be found in the resistant potato genotypes and not in
Desiree. Among these were two PR5 proteins that were identified
in both resistant genotypes. A β-D-xylosidase (Lexyl1) involved in
degradation of xylan was only found in the secretome of Sarpo
Mira, while Nectarin V was only found in SW93-1015. Nectarin
V is a glucose oxidase that participates in hydrogen peroxide
production.34 The identification of Nectarin V in leaves of
uninfected SW93-1015 plants coincides with the high constitu-
tive level of H2O2 in this genotype.

Phytophthora resistance in SW93-1015 specific to the shoot.
Inoculation with P. infestans on tubers resulted in mycelium

Figure 2. Detached leaf assay showing infection lesion or resistance reaction HR against P. infestans. (A) Desiree showing necrosis after infection, while
S. demissum, Sarpo Mira and SW93-1015 displayed HR at 9 dpi. (B) Graph showing number of lesions formed per leaf on Sarpo Mira and SW93-1015 at
3 and 9 dpi. Error bars indicate standard deviation of the mean. (C) Graph showing mean size of lesions on Sarpo Mira and SW93-1015 at 3 and 9 dpi.
Error bars indicate standard deviation of the mean.
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growth on SW93-1015 (2.3 on a scale where 0 = lack of
mycelium, and 3 = very intense growth). Sarpo Mira showed
very low to almost absent mycelium growth (average 0.1).
Inoculation of susceptible Bintje tubers resulted in comparable

mycelia growth to SW93-1015 (2.4) (Table 2). Sarpo Mira also
had smaller necrotic symptom-related lesions in the tuber than
SW93-1015. These data indicate that the resistance in SW93-
1015 is specific against P. infestans shoot infections.

Figure 3. Microscopic analysis of hypersensitive response (HR). Trypan blue staining performed on Desiree, SW93-1015 and Sarpo Mira. (A) Trypan blue
staining did not show any HR in uninfected leaves of the three genotypes. (B) Phytophthora zoospores at 6 hpi in Desiree (left), SW93-1015 (middle) and
Sarpo Mira (right). (C) Phytophthora zoospore germination in Desiree (left), scattered HR in SW93-1015 (middle) and Sarpo Mira (right) indicated by blue
coloration at 24 hpi. (D) Intense hyphal growth in Desiree (left), scattered HR in SW93-1015 (middle) and increased cell death in Sarpo Mira (right) at 3 dpi.
Size bars represent 100 mm.

Figure 4. 3,3-Diaminobenzidine (DAB) staining performed on Desiree, Sarpo Mira and SW93-1015 to detect H2O2 produced in detached leaves
after P. infestans inoculation. H2O2 detected in (A) Desiree, (B) Sarpo Mira and (C) SW93-1015 on uninfected leaves at 6 hpi, 24 hpi and 72 hpi
(from left to right). Size bar represents 15 mm.
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Constitutive defense in SW93-1015 has no effect on growth
and tuber yield. SW93-1015 did not show any reduction in
growth of aboveground parts due to constitutive defense, which
was comparable to growth of Sarpo Mira (Fig. 1B). Furthermore,
SW93-1015 produced regular-sized tubers with a yield of 224 ±
51 g plant21, which was not significantly different from Desiree
(184 ± 17 g plant21) and Sarpo Mira (180 ± 28 g plant21) in
optimal growing conditions. Thus, the constitutive expression of
defense in SW93-1015 did not show any apparent cost.

Discussion

Bearing in mind the persistent problem of late blight in potato
cultivation, several sources of resistance are needed. In our studies

the potato genotypes SW93-1015 and Sarpo Mira proved highly
resistant to P. infestans attack in repeated field trials, whole plant
and detached leaf assays, in contrast to several other cultivars
tested. We therefore analyzed these two genotypes in more detail
to investigate the underlying source of resistance. We found clear
differences between the two genotypes in HR pattern and in other
defense reactions such as H2O2 and PR protein accumulation,
which was constitutively activated in one of the genotypes.

A typical response in resistant plants to microbial attack is
development of HR. In our greenhouse whole plant assays and
field experiments, Sarpo Mira developed few macroscopic HR
lesions. A similar pattern has been shown for example in
transgenic Katahdin potato plants with the RB gene from
S. bulbocastanum.2 Data from our detached leaf assays also
indicated that the HR lesions in Sarpo Mira are similar in size
to those formed in S. demissum. This means that resistance in
Sarpo Mira might be mediated by classical R genes. Furthermore,
tuber resistance was high in Sarpo Mira and no constitutive
activation of immune response was found.

SW93-1015 showed an unusual reaction to Phytophthora
challenge, since there were no visible HR lesions on the plants
in the field trials and whole plant assays. Furthermore, no
spontaneous cell death was observed in uninfected plants at the
microscopic level and HR lesions were restricted to very small
areas in the detached leaf assays. SW93-1015 can be classified as a
cpr (constitutive PR) genotype in analogy to Arabidopsis cpr
mutants without spontaneous cell death such as cpr1, cpr6 and
mpk4.18,19,23 Compared with these mutants, SW93-1015 seems
to be a weak cpr genotype with normal growth showing con-
stitutive H2O2 production and PR protein accumulation in the

Figure 5. (A) SDS-PAGE showing apoplast proteins from untreated Desiree, SW93-1015 and Sarpo Mira. (B) Venn diagram showing number of proteins
identified by mass spectrometry in the three genotypes, also showing number of proteins overlapping and unique for the genotypes.

Table 2. Tuber resistance to P. infestans measured as mycelial growth and
lesion sizes. Recordings have been made on seven tubers per genotype.

Cultivar/line Mean mycelium growth ±SD Mean lesion size ±SD

SW93-1015 2.3 ± 0.48 4.7 ± 0.48

Bintje 2.4 ± 0.53 3.4 ± 0.78

Asterix 0.1 ± 0.37 6.0 ± 0.92

Escort 0.1 ± 0.37 6.4 ± 0.53

Sarpo Mira 0.1 ± 0.37 6.1 ± 0.89

Robijn 1.4 ± 0.53 4.7 ± 0.75

Superb 2.1 ± 0.37 5.0 ± 0.75

Victoria 1.9 ± 1.21 5.3 ± 0.48

Mycelium growth score: 0 (lack)–3 (intensive growth). Lesion size score:
1 (susceptible)–9 (most resistant).
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apoplast, including PR1 and an H2O2-producing enzyme. The
constitutively active immune system in this paranoid genotype
without any apparent cost raises the question of whether such an
immune system exists in cultivated or natural plant populations.
Earlier described cpr genotypes in Arabidopsis generally showed
reduced growth, indicating a metabolic cost for the constitutive
defense. In addition to absence of spontaneous cell death, smaller
or no HR lesions after the pathogen attack may lead to the
hypothesis that a less active form corresponding to MPK4 or
CNGC2 (DND1) is the cause of constitutive defense and reduced
HR in SW93-1015.

The potato genotype SW93-1015 might be a source of a
unique type of Phytophthora resistance compared with Sarpo
Mira and S. demissum. Although SW93-1015 is a cpr genotype,
it does not show any apparent growth defects and has the
capability to maintain constitutively active defense at a low
metabolic cost, at least in an agricultural system. This conclusion
is supported by tuber yield and normal plant growth, which are
comparable to those of other genotypes. The SW93-1015 clone
is among the few examples of a classical induced immune
system expressed constitutively without a major metabolic cost
or manipulation of the cell death system. Models have predicted
a benefit of constitutive defense in a situation of severe patho-
gen pressure29,35 or have shown that a combination of constitu-
tive and induced defense is optimal.36 To avoid high metabolic
costs, fine-tuning of the constitutive part could be necessary.
SW93-1015, found in artificial selection, might be an example
of such a balance between metabolic cost and constitutive
immune system.

SW93-1015 has been used as a parent in crosses performed
in the potato breeding program at Svalöf Weibull AB and later
at the Swedish University of Agricultural Sciences. However,
some of the drawbacks with SW93-1015 are relatively low
tuber resistance, inferior taste, susceptibility to potato leaf roll
virus and greening of tubers due to a tendency for aboveground
tuberization, reducing its value in classic breeding programs.

Our apoplast analysis revealed that PR5 protein was present
in both resistant genotypes but not in Desiree. PR5-like
proteins have been shown to inhibit germination and growth of
P. infestans,37,38 while leaves of transgenic potato plants over-
expressing a PR5 gene exhibited delayed development of disease
symptoms after inoculation with P. infestans.38 Nectarin V was
only detected in SW93-1015 in the present study. Nectarin V
is a flavin-containing berberine bridge enzyme (BBE)-like
protein that has glucose oxidase activity.34 Transgenic potato
expressing H2O2-generating glucose oxidase shows increased
resistance against P. infestans.39 Both Nectarin V and PR5
transcripts are known to be upregulated in P. infestans-infected
leaves.40

Our finding of a genotype with constitutive active defense in
conventional breeding material without a notable loss of fitness
creates a basis for a new molecular strategy to combat the
Phytophthora disease problem. This kind of variation might be
present in other genotypes and our current screening of wild
populations of potato can add to our understanding of defense
mechanisms existing in nature.

Materials and Methods

Field trials. In the field trials 10 tubers/genotype were planted in
two rows beside each other, with 5 tubers/row. The plant spacing
was 30 cm and the row spacing 75 cm. The trial consisted of three
repeats in randomized blocks. Every 5th row was planted with
Bintje to achieve an even infection pressure over the trial. Field
trials relied on spontaneous infection and the first symptoms of
late blight occurred on July 7, 2007. From that date, the trial was
scored at of 3–4 d intervals until July 24 and one-week intervals
after that until August 21st. Scoring was done according to the
Eucablight protocol and given as percentage of foliage affected.
Relative Area Under Disease Progression Curve (rAUDPC) was
calculated as previously described.41 In 2008, late blight infections
were rare and appeared late in the season. Because of this, only
three assessments were performed (August 5th and 27th; September
2nd) and a simplified scale was used. In 2009, late blight assess-
ments were performed on four occasions (July 28th; August 3rd,
11th and 21st). Scoring in that year was according to a 6-point
scale (0 = without any infection, 5 = very severe infection).

Whole plant assays. Potato plants were grown in the green-
house at 20°C with 16 h of light for 4–5 weeks with approxi-
mately 70% relative humidity. Plants were then moved to a
humid chamber where they were kept in 100% humidity.
After 8 h, plants were sprayed with a suspension containing
15,000 sporangia/ml until inoculum saturated the leaf surfaces.
Relative humidity was maintained at 100% for 2 d after infec-
tion and then adjusted to 90% for the rest of the experiment.
Scoring was performed according to a previously described
classification system,42 in three independent experiments, where
1 = . 90% infection and 8 = # 10% infection); no infection was
given a score of 9. Tuber yield was analyzed from 12 plants of
each genotype and a Student’s t-test was performed.

Phytophthora detached leaf assay. For all disease testing we
used P. infestans strain SE03058 (virulence 1, 3, 4, 7, 10, 11)
obtained from Björn Andersson, Department of Forest Mycology
and Pathology, SLU, Sweden. Cultures were maintained on rye
agar medium according to standard protocols. For obtaining
infectious sporangia, P. infestans was grown on detached leaves of
the susceptible potato cultivar Desiree.43 Sporangia were kept
at 4°C for 2 h before infecting the leaves to release zoospores.
Eight to 10 fully expanded leaves from 4–5 week old plants were
excised and kept in humid chambers for two hours before
inoculation with a 20 ml drop containing 15,000 sporangia/ml.
The inoculated leaves were kept in a climate chamber at 15°C
with the following light regime: 16 h light and 8 h dark. Number
of HR lesions and diameter were measured 3 dpi and 9 dpi.

Decapitated tuber assay. Tuber resistance was evaluated using
the method of inoculation of decapitated tubers.44 Slightly
decapitated tubers were drop-inoculated with the inoculums
comprising 20,000 zoospores/ml and were kept in dark at 18°C
for 10 d following inoculation. Aerial mycelia growth on decapi-
tated surfaces was graded on a scale 0–3, where 0 = absence of
mycelium and 3 = most intensive growth. Lesion size on longi-
tudinally cut tubers was scored using 1–9 scale, where 9 = the
most resistant.
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Detection of H2O2. In order to detect H2O2 production in
plant leaves, we used a modified version of a previously described
DAB staining protocol,45 whereby 1 mg ml21 3,3-diaminobenzedin
(DAB; Sigma-Aldrich) dissolved in water and adjusted to pH 3.6
with concentrated HCl was used. The second fully expanded leaves
were cut with a razor blade and put in a detached leaf assay box
where optimal light and humidity conditions were maintained.43

Ten 20 ml drops of P. infestans inoculum (15,000 sporangia/ml)
were deposited on the abaxial surface of the leaves. Six and 24 h
post inoculation (hpi), the leaves were immersed in DAB
solution and incubated overnight in darkness along with non-
inoculated control leaves. The reaction was stopped by clearing
the leaves with boiling 96% ethanol for 30min. The experiment
was repeated three times, with three replicates for each genotype.

Microscopy. In order to observe HR and Phytophthora
structures, leaves from plants grown in the climate chamber were
inoculated with P. infestans sporangia in detached leaf assays
according to the procedure described above. Leaf discs cut around
the inoculation drop from three leaves for each time point per
genotype were cut using a cork borer and subjected to Trypan
blue staining.46 This experiment was repeated three times, with
three replicates per experiment.

Secretome sample preparation. Fully expanded middle leaves
were treated with 1% Tween 20 by shaking mildly for 10 sec and
dried briefly on blotting paper. They were then placed in Petri
dishes, covered with a buffer with 150mM sodium phosphate and
50mM sodium chloride and placed in a vacuum chamber for
10min to infiltrate with buffer. The leaves were then very briefly
dried on blotting paper and centrifuged at 3,000 rpm for 3 min at
4°C in 15ml Falcon tubes containing a metal ring to separate
leaves from the secretome at the bottom of the tube and a protease
inhibitor cocktail. This protocol was modified from previously
published methods.47 Apoplast liquid was aliquoted into 1.5 ml
tubes and stored at -80°C.

SDS-PAGE separation and identification of apoplastic
proteins. Fpr proteomics analysis 120 ml of the secretome sample
was precipitated using a standard methanol procedure, dissolved
in 2x SDS-PAGE buffer containing DTT and separated for 1 cm
with SDS-PAGE. After staining by Coomassie, the gel lane
was cut into three pieces and each piece subjected to in-gel
tryptic digestion. In brief, the gel pieces were de-stained and
washed and, after dithiothreitol reduction and iodoacetamide
alkylation, the proteins were digested with trypsin (modified
sequencing grade; Promega) overnight at 37°C. The gel pieces
were shaken vigorously at room temperature for 15min, and the
eluted peptides were subsequently analyzed by liquid chromato-
graphy-tandem mass spectrometry (LC-MS/MS) using an LTQ-
Orbitrap XL mass spectrometer (Thermo) with collision-induced
fragmentation in the linear ion trap using top 7 data-dependent
acquisition. Raw data files were converted to Mascot Generic
Files using Proteowizard.48 Protein identification was performed
in the Proteios Software Environment using Mascot and X!
Tandem as described previously,49 in a locally assembled database
consisting of UniProt proteins from Solanum, Nicotiana and
potato protein predictions from ftp.plantbiology.msu.edu,
extended with an equal number of random proteins to assess
false discovery rates.
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